Newer
Older
Digital_Repository / Misc / Mass downloads / UTas / 2639.html
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  2. "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  3. <html>
  4. <head>
  5. <title>UTas ePrints - Turner Review No. 2 Southern Conifers in Time and Space</title>
  6. <script type="text/javascript" src="http://eprints.utas.edu.au/javascript/auto.js"><!-- padder --></script>
  7. <style type="text/css" media="screen">@import url(http://eprints.utas.edu.au/style/auto.css);</style>
  8. <style type="text/css" media="print">@import url(http://eprints.utas.edu.au/style/print.css);</style>
  9. <link rel="icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  10. <link rel="shortcut icon" href="/images/eprints/favicon.ico" type="image/x-icon" />
  11. <link rel="Top" href="http://eprints.utas.edu.au/" />
  12. <link rel="Search" href="http://eprints.utas.edu.au/cgi/search" />
  13. <meta content="Hill, Robert S." name="eprints.creators_name" />
  14. <meta content="Brodribb, Tim J." name="eprints.creators_name" />
  15. <meta content="" name="eprints.creators_id" />
  16. <meta content="Timothy.Brodribb@utas.edu.au" name="eprints.creators_id" />
  17. <meta content="article" name="eprints.type" />
  18. <meta content="2007-12-10 00:47:49" name="eprints.datestamp" />
  19. <meta content="2008-01-08 15:30:00" name="eprints.lastmod" />
  20. <meta content="show" name="eprints.metadata_visibility" />
  21. <meta content="Turner Review No. 2
  22. Southern Conifers in Time and Space" name="eprints.title" />
  23. <meta content="pub" name="eprints.ispublished" />
  24. <meta content="270402" name="eprints.subjects" />
  25. <meta content="270400" name="eprints.subjects" />
  26. <meta content="restricted" name="eprints.full_text_status" />
  27. <meta content="The three southern conifer families, Araucariaceae, Cupressaceae and Podocarpaceae, have a long
  28. history and continue to be an important part of the vegetation today. The Araucariaceae have the most
  29. extensive fossil record, occurring in both hemispheres, and with Araucaria in particular having an
  30. ancient origin. In the Southern Hemisphere Araucaria and Agathis have substantial macrofossil records,
  31. especially in Australasia, and Wollemia probably also has an important macrofossil record. At least one
  32. extinct genus of Araucariaceae is present as a macrofossil during the Cenozoic. Cupressaceae
  33. macrofossils are difficult to identify in older sediments, but the southern genera begin their record in the
  34. Cretaceous (Athrotaxis) and become more diverse and extensive during the Cenozoic. Several extinct
  35. genera of Cupressaceae also occur in Cretaceous and Cenozoic sediments in Australasia. The
  36. Podocarpaceae probably begin their macrofossil record in the Triassic, although the early history is still
  37. uncertain. Occasional Podocarpaceae macrofossils have been recorded in the Northern Hemisphere, but
  38. they are essentially a southern family. The Cenozoic macrofossil record of the Podocarpaceae is
  39. extensive, especially in south-eastern Australia, where the majority of the extant genera have been
  40. recorded. Some extinct genera have also been reported from across high southern latitudes, confirming
  41. an extremely diverse and widespread suite of Podocarpaceae during the Cenozoic in the region.
  42. In the Southern Hemisphere today conifers achieve greatest abundance in wet forests. Those which
  43. compete successfully with broad-leaved angiosperms in warmer forests produce broad, flat
  44. photosynthetic shoots. In the Araucariaceae this is achieved by the planation of multiveined leaves into
  45. large compound shoots. In the other two families leaves are now limited to a single vein (except
  46. Nageia), and to overcome this limitation many genera have resorted to re-orientation of leaves and twodimensional
  47. flattening of shoots. The Podocarpaceae show greatest development of this strategy with 11
  48. of 19 genera producing shoots analogous to compound leaves. The concentration of conifers in wet
  49. forest left them vulnerable to the climate change which occurred in the Cenozoic, and decreases in
  50. diversity have occurred since the Paleogene in all regions where fossil records are available. Information
  51. about the history of the dry forest conifers is extremely limited because of a lack of fossilisation in such
  52. environments. The southern conifers, past and present, demonstrate an ability to compete effectively
  53. with angiosperms in many habitats and should not be viewed as remnants which are ineffectual against
  54. angiosperm competitors." name="eprints.abstract" />
  55. <meta content="1999" name="eprints.date" />
  56. <meta content="published" name="eprints.date_type" />
  57. <meta content="Australian Journal of Botany" name="eprints.publication" />
  58. <meta content="47" name="eprints.volume" />
  59. <meta content="5" name="eprints.number" />
  60. <meta content="639-696" name="eprints.pagerange" />
  61. <meta content="TRUE" name="eprints.refereed" />
  62. <meta content="0067-1924" name="eprints.issn" />
  63. <meta content="http://www.publish.csiro.au/paper/BT98093.htm" name="eprints.official_url" />
  64. <meta content="Anderson, H. M. (1978). Podozamites and associated cones and scales from the Upper Triassic Molteno
  65. Formation, Karoo Basin, South Africa. Palaeontologia Africana 21, 57–77.
  66. Archangelsky, S. (1963). A new Mesozoic flora from Ticó, Santa Cruz Province, Argentina. Bulletin of
  67. the British Museum (Natural History) Geology 8, 47–92.
  68. Archangelsky, S., and del Fueyo, G. (1989). Squamastrobus gen. n., a fertile podocarp from the Early
  69. Cretaceous of Patagonia, Argentina. Review of Palaeobotany and Palynology 59, 109–126.
  70. Ash, J. (1985). Tree rings in tropical Callitris macleayana F.Muell. Australian Journal of Botany 31,
  71. 277–281.
  72. Axsmith, B. J., Taylor, T. N., and Taylor, E. L. (1998). Anatomically preserved leaves of the conifer
  73. Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany
  74. 85, 704–713.
  75.  
  76. Beadle, N. C. W. (1981). ‘The Vegetation of Australia.’ (Gustav Fischer Verlag: Stuttgart.)
  77. Berry, E. W. (1922). The flora of the Concepcion–Arauco coal measures of Chile. The John Hopkins
  78. University Studies in Geology 4, 73–144.
  79. Berry, E. W. (1938). Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America
  80. Special Papers Number 12, 149 pp.
  81. Bigwood, A. J., and Hill, R. S. (1985). Tertiary araucarian macrofossils from Tasmania. Australian
  82. Journal of Botany 33, 645–656.
  83. Blackburn, D. T. (1981). Tertiary megafossil flora of Maslin Bay, South Australia: numerical taxonomic
  84. study of selected leaves. Alcheringa 5, 9–28.
  85. Blackburn, D. T. (1985). Palaeobotany of the Yallourn and Morwell coal seams. (Palaeobotanical
  86. Project—report 3: SECV.)
  87. Bond, W. J. (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm
  88. persistence. Biological Journal of the Linnean Society 36, 227–249.
  89. Bose, M. N. (1975). Araucaria haastii Ettingshausen from Shag Point, New Zealand. Palaeobotanist 22,
  90. 76–80.
  91. Bose, M. N., and Jain, K. P. (1964). A megastrobilis belonging to the Araucariaceae from the Rajmahal
  92. Hills, Bihar, India. Palaeobotanist 12, 229–231.
  93. Bowman, D. M. J. S., and Harris, S. (1995). Conifers of Australia’s dry forests and open woodlands. In
  94. ‘Ecology of the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.) pp. 252–270. (Melbourne
  95. University Press: Melbourne.)
  96. Brodribb, T. J., and Hill, R. S. (1997a). Imbricacy and stomatal wax plugs reduce maximum leaf
  97. conductance in Southern Hemisphere conifers. Australian Journal of Botany 45, 657–668.
  98. Brodribb, T. J., and Hill, R. S. (1997b). Light response characteristics of a morphologically diverse
  99. group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110,
  100. 10–17.
  101. Brodribb, T. J., and Hill, R. S. (1998). The photosynthetic drought physiology of a diverse group of
  102. Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional
  103. Ecology 12, 465–471.
  104. Calder, M. G. (1953). A coniferous petrified forest in Patagonia. Bulletin of the British Museum Natural
  105. History. Geology 2, 97–138.
  106. Cantrill, D. J. (1991). Broad-leafed coniferous foliage from the Lower Cretaceous Otway Group,
  107. southeastern Australia. Alcheringa 15, 177–190.
  108. Cantrill, D. J. (1992). Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia.
  109. International Journal of Plant Science 153, 622–645.
  110. Carpenter, R. J. (1991). Palaeovegetation and Environment at Cethana, Tasmania. Ph.D. Thesis, University
  111. of Tasmania.
  112. Carpenter, R. J., and Pole, M. S. (1995). Eocene plant fossils from the Lefroy and Cowan
  113. paleodrainages, Western Australia. Australian Systematic Botany 8, 1107–1154.
  114. Carpenter, R. J., Hill, R. S., and Jordan, G. J. (1994). Cenozoic vegetation in Tasmania: macrofossil
  115. evidence. In ‘History of the Australian Vegetation’. (Ed. R. S. Hill.) pp. 276–298. (Cambridge
  116. University Press: Cambridge.)
  117. Chambers, T. C., Drinnan, A. N., and McLoughlin, S. (1998). Some morphological features of Wollemi
  118. Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils.
  119. International Journal of Plant Science 159, 160–171.
  120. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R.,
  121. Price, R. A., Hills, H. G., Qui, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R.,
  122. Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S.,
  123. Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y.,
  124. Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte,
  125. L. E., Golenberg, E., Learn Jr, G. H., Graham, S. W., Barrett, S. C. H., Dayanandan, S., and Albert,
  126. V. A. (1993). Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene
  127. rbcL. Annals of the Missouri Botanic Garden 80, 528–580.
  128. Christophel, D. C. (1981). Tertiary megafossil floras of Australia as indicators of floristic associations
  129. and palaeoclimate. In ‘Ecological Biogeography of Australia’. (Ed. A. Keast.) pp. 379–390. (W.
  130. Junk: The Hague.)
  131. Christophel, D. C., Harris, W. K., and Syber, A. K. (1987). The Eocene flora of the Anglesea locality,
  132. Victoria. Alcheringa 11, 303–323.
  133.  
  134. Christophel, D. C., Scriven, L. J., and Greenwood, D. R. (1992). An Eocene megafossil flora from Nelly
  135. Creek, South Australia. Transactions of the Royal Society of South Australia 116, 65–76.
  136. Cookson, I. C., and Duigan, S. L. (1951). Tertiary Araucariaceae from south-eastern Australia, with
  137. notes on living species. Australian Journal of Scientific Research Series B 4, 415–449.
  138. Cookson, I. C., and Pike, K. M. (1953a). The Tertiary occurrence and distribution of Podocarpus
  139. (section Dacrycarpus ) in Australia and Tasmania. Australian Journal of Botany 1, 71–82.
  140. Cookson, I. C., and Pike, K. M. (1953b). A contribution to the Tertiary occurrence of the genus
  141. Dacrydium in the Australian region. Australian Journal of Botany 1, 474–484.
  142. Cookson, I. C., and Pike, K. M. (1954). The fossil occurrence of Phyllocladus and two other podocarpaceous
  143. types in Australia. Australian Journal of Botany 2, 60–67.
  144. Couper, R. A., and McQueen, D. R. (1954). Pliocene and Pleistocene plant fossils of New Zealand and
  145. their climatic interpretation. New Zealand Journal of Science and Technology 35, 398–420.
  146. Cullen, P. J. (1987). Regeneration patterns in populations of Athrotaxis selaginoides D.Don. from
  147. Tasmania. Journal of Biogeography 14, 39–51.
  148. Cullen, P. J., and Kirkpatrick, J. B. (1988a). The ecology of Athrotaxis D.Don (Taxodiaceae). I. Stand
  149. structure and regeneration of A. cupressoides. Australian Journal of Botany 36, 547–560.
  150. Cullen, P. J., and Kirkpatrick, J. B. (1988b). The ecology of Athrotaxis D.Don (Taxodiaceae). II.
  151. The distributions and ecological differentiation of A. cupressoides and A. selaginoides. Australian
  152. Journal of Botany 36, 561–573.
  153. Darrow, B. S. (1936). A fossil araucarian embryo from the Cerro Cuadrado of Patagonia. Botanical
  154. Gazette 98, 328–337.
  155. Deane, H. (1925). Fossil leaves from the Open Cut, State Brown Coal Mine, Morwell. Geological
  156. Survey of Victoria Records 4, 492–498.
  157. Dettmann, M. E. (1989). Antarctica: Cretaceous cradle of austral temperate rainforests? In ‘Origins and
  158. Evolution of the Antarctic Biota’. (Ed. J. A. Crame.) Geological Society Publication 47, 89–105.
  159. Dettmann, M. E. (1994). Cretaceous vegetation: the microfossil record. In ‘History of the Australian
  160. Vegetation’. (Ed. R. S. Hill.) pp. 143–170. (Cambridge University Press: Cambridge.)
  161. Dettmann, M. E., and Jarzen, D. M. (1990). The Antarctic/Australian rift valley: Late Cretaceous cradle
  162. of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65, 131–144.
  163. Dilcher, D. L. (1969). Podocarpus from the Eocene of North America. Science 164, 299–301.
  164. Donoso, C., Sandoval, V., Grez, R., and Rodriguez, J. (1993). Dynamics of Fitzroya cupressoides
  165. forests in southern Chile. Journal of Vegetation Science 4, 303–312.
  166. Drinnan, A. N., and Chambers, T. C. (1986). Flora of the Lower Cretaceous Koonwarra fossil bed
  167. (Korumburra group), south Gippsland, Victoria. Association of Australasian Palaeontologists
  168. Memoir 3, 1–77.
  169. Dusen, P. (1908). Über die Tertiare Flora der Magellanslander I. Svenska Expedition till Magellanslanderna
  170. 1, 87–107.
  171. Eckenwalder, J. E. (1976a). Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger.
  172. Madrono 23, 237–256.
  173. Eckenwalder, J. E. (1976b). Comments on ‘A new classification of the conifers’. Taxon 25, 338–339.
  174. Enright, N. J. (1982a). Does Araucaria hunsteinii compete with its neighbours? Australian Journal of
  175. Ecology 7, 97–99.
  176. Enright, N. J. (1982b). The ecology of Araucaria species in New Guinea. II. Pattern in the distribution
  177. of young and mature individuals and light requirements of seedlings. Australian Journal of Ecology
  178. 7, 39–48.
  179. Enright, N. J. (1995). Conifers of tropical Australasia. In ‘Ecology of the Southern Conifers’. (Eds N. J.
  180. Enright and R. S. Hill.) pp. 197–222. (Melbourne University Press: Melbourne.)
  181. Ettingshausen, C. von (1887). Beiträge sur Kenntniss der fossilen Flora Neuseelands. Denkschriften der
  182. Kungliga Akademie der Wissenschaften in Wien 53, 143–194.
  183. Ettingshausen, C. von (1888). Contributions to the Tertiary flora of Australia. Memoirs of the Geological
  184. Survey of New South Wales 2, 1–189.
  185. Ettingshausen, C. von (1891). Contributions to the knowledge of the flora of New Zealand. Transactions
  186. of the New Zealand Institute 23, 237–310.
  187. Finckh, M., and Paulsch, A. (1995). The ecological strategy of Araucaria araucana. Flora 190,
  188. 365–382.
  189. Florin, R. (1931). Untersuchungen zur stammesgeschichte der Coniferales und Cordaitales. Kungliga
  190. Svenska Vetenskapsakademiens Handlingar 10, 1–588.
  191.  
  192. Florin, R. (1940a). The Tertiary fossil conifers of south Chile and their phytogeographical significance.
  193. Kungliga Svenska Vetenskapsakademiens Handlingar 19, 1–107.
  194. Florin, R. (1940b). Die heutige und frühere Verbreitung der Koniferengattung Acmopyle Pilger. Svensk
  195. Botanisk Tidskrift 34, 117–140.
  196. Florin, R. (1960). Die Fruhere Verbreitung der Konifergattung Athrotaxis. D.Don. Senck. Leth. 41,
  197. 199–207.
  198. Florin, R. (1963). The distribution of conifer and taxad genera in time and space. Acti Horti Bergiani 20,
  199. 121–312.
  200. Gadek, P. A., and Quinn, C. J. (1993). An analysis of relationships within the Cupressaceae sensu stricto
  201. based on rbcL sequences. Annals of the Missouri Botanic Gardens 80, 581–586.
  202. Greenwood, D. R. (1987). Early Tertiary Podocarpaceae: megafossils from the Eocene Anglesea
  203. locality, Victoria, Australia. Australian Journal of Botany 35, 111–133.
  204. Guillaumin, A. (1957). Résultats scientifiques de la mission Franco-Suisse de botanique en Nouvelle-
  205. Calédonie (1950–1952). Mem. Mus. Natl Hist. Nat. Sér. B Bot VIII, fascicle 1, 1–120.
  206. Halle, T. G. (1913). Some Mesozoic plant-bearing deposits in Patagonia and Tierra del Fuego and their
  207. floras. Kungliga Svenska Vetenskapakademiens Handlingar 51, 1–58.
  208. Harris, T. M. (1979). The Yorkshire Jurassic flora. V. Coniferales. British Museum of Natural History
  209. Publication No. 803, 166 pp.
  210. Hill, R. S. (1982). The Eocene megafossil flora of Nerriga, New South Wales, Australia.
  211. Palaeontographica Abt. B 181, 44–77.
  212. Hill, R. S. (1983). Evolution of Nothofagus cunninghamii and its relationship to N. moorei as inferred
  213. from Tasmanian macrofossils. Australian Journal of Botany 31, 453–465.
  214. Hill, R. S. (1988). A re-investigation of Nothofagus muelleri (Ett.) Paterson and Cinnamomum nuytsii
  215. Ett. from the Late Eocene of Vegetable Creek. Alcheringa 12, 221–231.
  216. Hill, R. S. (1989). New species of Phyllocladus (Podocarpaceae) macrofossils from south eastern
  217. Australia. Alcheringa 13, 193–208.
  218. Hill, R. S. (1990). Araucaria (Araucariaceae) species from Australian Tertiary sediments—a
  219. micromorphological study. Australian Systematic Botany 3, 203–220.
  220. Hill, R. S. (1991). Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their
  221. bearing on the evolution of the genus. Botanical Journal of the Linnean Society 105, 73–112.
  222. Hill, R. S. (1994a). The Australian fossil plant record: an introduction. In ‘History of the Australian
  223. Vegetation’. (Ed. R. S. Hill.) pp. 1–4. (Cambridge University Press: Cambridge.)
  224. Hill, R. S. (1994b). The history of selected Australian taxa. In ‘History of the Australian Vegetation’.
  225. (Ed. R. S. Hill.) pp. 390–419. (Cambridge University Press: Cambridge.)
  226. Hill, R. S. (1995). Conifer origin, evolution and diversification in the Southern Hemisphere. In
  227. ‘Ecology of the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.) pp. 10–29. (Melbourne
  228. University Press: Melbourne.)
  229. Hill, R. S. (1996). The riddle of unique Southern Hemisphere Nothofagus on southwest Pacific Islands:
  230. its challenge to biogeographers. In ‘The Origin and Evolution of Pacific Island Biotas, New Guinea
  231. to Eastern Polynesia: Patterns and Processes’. (Eds A. Keast and S. E. Miller.) pp. 247–260. (SPB
  232. Academic Publishing bv: Amsterdam.)
  233. Hill, R. S., and Bigwood, A. J. (1987). Tertiary gymnosperms from Tasmania: Araucariaceae. Alcheringa
  234. 11, 325–335.
  235. Hill, R. S., and Carpenter, R.J. (1989). Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa
  236. 13, 89–102.
  237. Hill, R. S., and Carpenter, R. J. (1991). Evolution of Acmopyle and Dacrycarpus (Podocarpaceae)
  238. foliage as inferred from macrofossils in south-eastern Australia. Australian Systematic Botany 4,
  239. 449–479.
  240. Hill, R. S., and Dettmann, M. E. (1996). Origin and diversification of the genus Nothofagus. In ‘The
  241. Ecology and Biogeography of Nothofagus Forests’. (Eds T. T. Veblen, R. S. Hill and J. Read.)
  242. pp. 11–24. (Yale University Press: Yale.)
  243. Hill, R. S., and Macphail, M. K. (1983). Reconstruction of the Oligocene vegetation at Pioneer,
  244. northeast Tasmania. Alcheringa 7, 281–299.
  245. Hill, R. S., and Macphail, M. K. (1985). A fossil flora from rafted Plio-Pleistocene mudstones at Regatta
  246. Point, Tasmania. Australian Journal of Botany 33, 497–517.
  247. Hill, R. S., and Merrifield, H. E. (1993). An Early Tertiary macroflora from West Dale, southwestern
  248. Australia. Alcheringa 17, 285–326.
  249.  
  250. Hill, R. S., and Pole, M. S. (1992). Leaf and shoot morphology of extant Afrocarpus, Nageia and
  251. Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement from Tertiary
  252. sediments in Australasia. Australian Systematic Botany 5, 337–358.
  253. Hill, R. S., and Scriven, L. J. (1997). Palaeoclimate across an altitudinal gradient in the Oligo–Miocene
  254. of northern Tasmania: an investigation of nearest living relative analysis. Australian Journal of
  255. Botany 45, 493–505.
  256. Hill, R. S., and Scriven, L. J. (1999). Falcatifolium (Podocarpaceae) macrofossils from Paleogene
  257. sediments in south-eastern Australia: a reassessment. Australian Systematic Botany 12, 711–720.
  258. Hill, R. S., and Whang, S. S. (1996). A new species of Fitzroya (Cupressaceae) from Oligocene
  259. sediments in north-western Tasmania. Australian Systematic Botany 9, 867–875.
  260. Hill, R. S., and Whang, S. S. (1999). Dacrycarpus (Podocarpaceae) macrofossils from Miocene
  261. sediments at Elands, eastern Australia and their relationship to living and fossil species. Australian
  262. Systematic Botany (in press).
  263. Hill, R. S., Jordan, G. J., and Carpenter, R. J. (1993). Taxodiaceous macrofossils from Tertiary and
  264. Quaternary sediments in Tasmania. Australian Systematic Botany 6, 237–249.
  265. Holden, R. (1915). On the cuticles of some Indian conifers. Botanical Gazette 60, 215–227.
  266. Hope, G. S. (1980). New Guinea mountain vegetation communities. In ‘The Alpine Flora of New
  267. Guinea Volume I’. (Ed. P. van Royen.) pp. 153–222. (J. Cramer.)
  268. Hyland, B. P. M. (1977). A revision of the genus Agathis (Araucariaceae) in Australia. Brunonia 1,
  269. 103–115.
  270. Jaffré, T. (1995). Distribution and ecology of the conifers of New Caledonia. In ‘Ecology of the Southern
  271. Conifers’. (Eds N. J. Enright and R. S. Hill.) pp. 171–196. (Melbourne University Press: Melbourne.)
  272. Jennings, J. N. (1959). The coastal geomorphology of King Island, Bass Strait, in relation to changes in
  273. the relative level of land and sea. Records of the Queen Victoria Museum Launceston 11, 1–35.
  274. Jones, W. G., Hill, K. D., and Allen, J. M. (1995). Wollemia nobilis, a new living Australian genus and
  275. species in the Araucariaceae. Telopea 6, 173–176.
  276. Jordan, G. J. (1995). Extinct conifers and conifer diversity in the Early Pleistocene of western Tasmania.
  277. Review of Palaeobotany and Palynology 84, 375–387.
  278. Kelch, D. G. (1997). The phylogeny of the Podocarpaceae based on morphological evidence. Systematic
  279. Botany 22, 113–131.
  280. Kendall, M. W. (1949). A Jurassic member of the Araucariaceae. Annals of Botany 13, 151–161.
  281. Kimura, T., Ohana, T., and Mimoto, K. (1988). Discovery of a podocarpaceous plant from the Lower
  282. Cretaceous of Kochi Prefecture, in the Outer Zone of southwest Japan. Proceedings of the Japan
  283. Academy 64, 213–216.
  284. Krassilov, V. A. (1974). Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the
  285. theory of conifer evolution. Palaeontology 17, 365–370.
  286. Lara, A., and Villalba, R. (1993). A 3622 year temperature reconstruction from Fitzroya cupressoides
  287. tree rings in southern South America. Science 260, 1104–1106.
  288. Laubenfels, D. J. de (1953). The external morphology of coniferous leaves. Phytomorphology 3, 1–20.
  289. Laubenfels, D. J. de (1959). Parasitic conifer found in New Caledonia. Science 130, 3367–3397.
  290. Laubenfels, D. J. de (1969). A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae,
  291. in part. Journal of the Arnold Arboretum 50, 274–368.
  292. Laubenfels, D. J. de (1972). Gymnospermes. Flore de la Nouvelle-Caledonie et Dependances No. 4.
  293. (Museum National D’Histoire Naturelle: Paris.)
  294. Laubenfels, D. J. de (1978). The Moluccan dammars (Agathis, Araucariaceae). Blumea 24, 499–504.
  295. Laubenfels, D. J. de (1979). The species of Agathis (Araucariaceae) of Borneo. Blumea 25, 531–541.
  296. Laubenfels, D. J. de (1984). Dacrydium Solander ex Lambert. Pacific Plant Areas 4, 204–205.
  297. Laubenfels, D. J. de (1988). Coniferales. Flora Malesiana 10, 337–453.
  298. Laubenfels, D. J. de, and Silba, J. (1987). The Agathis of Espiritu Santo (Araucariaceae, New Hebrides).
  299. Phytologia 61, 448–452.
  300. Laubenfels, D. J. de, and Silba, J. (1988). Notes on Asian and trans-Pacific Podocarpaceae, II.
  301. Phytologia 65, 329–332.
  302. Leverenz, J. W. (1995). Shade shoot structure of conifers and the photosynthetic response to light at two
  303. CO2 partial pressures. Functional Ecology 9, 413–421.
  304. Li, H. M. (1992). Early Tertiary palaeoclimate of King George Island, Antarctica—evidence from the
  305. Fossil Hill flora. In ‘Recent Progress in Antarctic Earth Science’. (Eds Y. Yoshida et al.) pp. 371–375.
  306. (Terra Scientific Publishing Co.: Tokyo.)
  307.  
  308. Lusk, C. H., and Smith, B. (1998). Life history differences and tree species co-existence in an oldgrowth
  309. New Zealand rainforest. Ecology 79, 795–806.
  310. Macphail, M. K., Jordan, G. J., and Hill, R. S. (1993). Key periods in the evolution of the flora and
  311. vegetation in western Tasmania I. The Early–Middle Pleistocene. Australian Journal of Botany 41,
  312. 673–707.
  313. Macphail, M. K., Alley, N. F., Truswell, E. M., and Sluiter, I. R. K. (1994). Early Tertiary vegetation:
  314. evidence from spores and pollen. In ‘History of the Australian Vegetation’. (Ed. R. S. Hill.) pp. 189–261.
  315. (Cambridge University Press: Cambridge.)
  316. Macphail, M. K., Hill, K., Partridge, A. D., Truswell, E. M., and Foster, C. (1995). ‘Wollemi Pine’—old
  317. pollen records for a newly discovered genus of gymnosperm. Geology Today, March–April 1995, 48–50.
  318. McLoughlin, S., and Hill, R. S. (1996). The succession of Western Australian Phanerozoic terrestrial
  319. floras. In ‘Gondwana Heritage: Past, Present and Future of the Western Australian Biota’. (Eds S. D.
  320. Hopper, J. A. Chappill, M. S. Harvey and A. S. George.) pp. 61–80. (Surrey Beatty &amp; Sons:
  321. Chipping Norton.)
  322. McLoughlin, S., Drinnan, A. N., and Rozefelds, A. C. (1995). A Cenomanian flora from the Winton
  323. Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38, 273–313.
  324. Menendez, C. A., and Caccavari, M. A. (1966). Estructura epidermica de Araucaria nathorsti Dus. del
  325. terciario de Pico Quemado, Rio Negro. Ameghiniana 4, 195–199.
  326. Meyer-Berthaud, B., and Taylor, T. N. (1991). A probable conifer with podocarpacean affinities from
  327. the Triassic of Antarctica. Review of Palaeobotany and Palynology 67, 179–198.
  328. Midgley, J. J., Seydack, A., Reynell, D., and McKelly, D. (1990). Fine-grain pattern in Southern Cape
  329. Plateau forests. Journal of Vegetation Science 1, 539–546.
  330. Midgley, J. J., Bond, W. J., and Geldenhuys, C. J. (1995). The ecology of southern African conifers. In
  331. ‘Ecology of the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.) pp. 64–80. (Melbourne
  332. University Press: Melbourne.)
  333. Mildenhall, D. C., and Johnston, M. R. (1971). A megastrobilus belonging to the genus Araucarites
  334. from the Upper Motuan (Upper Albian), Wairarapa, North Island, New Zealand. New Zealand
  335. Journal of Botany 9, 67–79.
  336. Miller, C. N. (1988). The origin of modern conifer families. In ‘Origin and Evolution of Gymnosperms’.
  337. (Ed. C. B. Beck.) pp. 448–486. (Columbia University Press: New York.)
  338. Miller, C. N., and LaPasha, C. A. (1983). Structure and affinities of Athrotaxites berryi Bell, an Early
  339. Cretaceous conifer. American Journal of Botany 70, 772–779.
  340. Molloy, B. P. J. (1995). Manoao (Podocarpaceae), a new monotypic conifer genus endemic to New
  341. Zealand. New Zealand Journal of Botany 33, 183–201.
  342. Morel, E. M. (1991). Estudio paleoflorístico y paleoambiental de la secuencia Triàsica en el àrea de
  343. Cachueta (Provincia de Mendoza). Thesis Facultad Ciencias Naturales y Museo, La Plata.
  344. Ogden, J. (1978). On the dendrochronological potential of Australian trees. Australian Journal of
  345. Ecology 3, 339–356.
  346. Ogden, J. (1980). Dendrochronology and dendrochronology—an introduction. New Zealand Journal of
  347. Ecology 3, 154–156.
  348. Ogden, J. (1985). An introduction to plant demography with special reference to New Zealand trees.
  349. New Zealand Journal of Botany 23, 751–772.
  350. Ogden, J., and Stewart, G. H. (1995). Community dynamics of the New Zealand conifers. In ‘Ecology of
  351. the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.) pp. 81–119. (Melbourne University Press:
  352. Melbourne.)
  353. Page, C. N. (1980). Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics
  354. and Evolution 135, 71–79.
  355. Pauw, C. A., and Linder, P. H. (1997). Tropical African cedars (Widdringtonia, Cupressaceae): systematics,
  356. ecology and conservation status. Botanical Journal of the Linnean Society 123, 297–319.
  357. Peat, H. J., and Fitter, A. H. (1994). A comparative study of the distribution and density of stomata in
  358. the British flora. Biological Journal of the Linnean Society 52, 377–393.
  359. Peters, M. D., and Christophel, D. C. (1978). Austrosequoia wintonensis, a new taxodiaceous cone from
  360. Queensland, Australia. Canadian Journal of Botany 56, 3119–3128.
  361. Pole, M. S. (1992a). Eocene vegetation from Hasties, north-eastern Tasmania. Australian Systematic
  362. Botany 5, 431–475.
  363. Pole, M. S. (1992b). Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifers. Journal
  364. of the Royal Society of New Zealand 22, 287–302.
  365.  
  366. Pole, M. S. (1994a). The New Zealand flora—entirely long-distance dispersal? Journal of Biogeography
  367. 21, 625–635.
  368. Pole, M. S. (1994b). An Eocene macroflora from the Taratu Formation at Livingstone, North Otago,
  369. New Zealand. Australian Journal of Botany 42, 341–367.
  370. Pole, M. S. (1995). Late Cretaceous macrofloras of eastern Otago, New Zealand: gymnosperms.
  371. Australian Systematic Botany 8, 1067–1106.
  372. Pole, M. S. (1997). Paleocene plant macrofossils from Kakahu, South Canterbury, New Zealand.
  373. Journal of the Royal Society of New Zealand 27, 371–400.
  374. Pole, M. S. (1998). Paleocene gymnosperms from Mt Somers, New Zealand. Journal of the Royal
  375. Society of New Zealand 28, 375–403.
  376. Pole, M. S., and Macphail, M. K. (1996). Eocene Nypa from Regatta Point, Tasmania. Review of
  377. Palaeobotany and Palynology 92, 55–67.
  378. Pole, M. S., Hill, R. S., Green, N., and Macphail, M. K. (1993). The Late Oligocene Berwick Quarry
  379. flora—rainforest in a drying environment. Australian Systematic Botany 6, 399–428.
  380. Price, R. A., and Lowenstein, J. M. (1989). An immunilogical comparison of the Sciadopityaceae,
  381. Taxodiaceae, and Cupressaceae. Systematic Botany 14, 141–149.
  382. Quinn, C. J. (1982). Taxonomy of Dacrydium Sol. ex Lamb. emend. de Laub. (Podocarpaceae). Australian
  383. Journal of Botany 30, 311–320.
  384. Reich, P. B., Tjoelker, M. G., Vanderklein, D. W., and Bushena, C. (1998). Close association of relative
  385. growth rate, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree
  386. species grown in high and low light. Functional Ecology 12, 327–338.
  387. Retallack, G. J. (1981). Middle Triassic megafossil plants from Long Gully, near Otemata, north Otago,
  388. New Zealand. Journal of the Royal Society of New Zealand 11, 167–200.
  389. Reymanówna, M. (1987). A Jurassic podocarp from Poland. Review of Palaeobotany and Palynology
  390. 51, 133–143.
  391. Saverimuttu, T., and Westoby, M. (1996). Components of variation in seedling potential relative growth
  392. rate—phylogenetically independent contrasts. Oecologia 105, 281–285.
  393. Scriven, L. J. (1993). Diversity of the Mid-Eocene Maslin Bay Flora, South Australia. Ph.D. Thesis,
  394. University of Adelaide.
  395. Scriven, L. J., and Hill, R. S. (1996). Relationships among Tasmanian Tertiary Nothofagus (Nothofagaceae)
  396. populations. Botanical Journal of the Linnean Society 121, 345–364.
  397. Selling, O. H. (1950). Some Tertiary plants from Australia. Svensk Botanisk Tidskrift 44, 551–560.
  398. Seward, A. C., and Conway, V. M. (1935). Fossil plants from Kingigtok and Kagdlunguak, west
  399. Greenland. Meddelelser om Grønland udgivne af Kommissionen for Videnskabelige Undersøgelser i
  400. Grønland 93, 1–41.
  401. Sharma, B. D., and Bohra, D. R. (1977). Petrified araucarian megastrobili from the Jurassic of the
  402. Rajmahal Hills, India. Acta Palaeobotanica 18, 31–36.
  403. Silba, J. (1986). Encyclopaedia Coniferae. Phytologia Memoirs 8, 217 pp. (Moldenke &amp; Moldenke: Corvallis,
  404. Oregon.)
  405. Stockey, R. A. (1975). Seeds and embryos of Araucaria mirabilis. American Journal of Botany 62,
  406. 856–868.
  407. Stockey, R. A. (1978). Reproductive biology of Cerro Cuadrado fossil conifers: ontogeny and reproductive
  408. strategies in Araucaria mirabili (Spegazzini) Windhausen. Palaeontographica Abt. B 166, 1–15.
  409. Stockey, R. A. (1980a). Anatomy and morphology of Araucaria sphaerocarpa Carruthers from the
  410. Jurassic inferior oolite of Bruton, Somerset. Botanical Gazette 141, 116–124.
  411. Stockey, R. A. (1980b). Jurassic araucarian cone from southern England. Palaeontology 23, 657–666.
  412. Stockey, R. A. (1982). The Araucariaceae: an evolutionary perspective. Review of Palaeobotany and
  413. Palynology 37, 133–154.
  414. Stockey, R. A. (1990). Antarctic and Gondwana conifers. In ‘Antarctic Paleobiology’. (Eds T. N. Taylor
  415. and E. L. Taylor.) pp. 179–191. (Springer-Verlag: New York.)
  416. Stockey, R. A. (1994). Mesozoic Araucariaceae: morphology and systematic relationships. Journal of
  417. Plant Research 107, 493–502.
  418. Stockey, R. A., and Frevel, B. J. (1997). Cuticle micromorphology of Prumnopitys Philippi (Podocarpaceae).
  419. International Journal of Plant Science 158, 198–221.
  420. Stockey, R. A., and Ko, H. (1986). Cuticle morphology of Araucaria de Jussieu. Botanical Gazette 147,
  421. 508–548.
  422. Stockey, R. A., and Taylor, T. N. (1978). On the structure and evolutionary relationships of the Cerro
  423. Cuadrado fossil conifer seedlings. Botanical Journal of the Linnean Society 76, 161–176.
  424. Stockey, R. A., Ko, H., and Woltz, P. (1992). Cuticle micromorphology of Falcatifolium de Laubenfels
  425. (Podocarpaceae). International Journal of Plant Science 153, 589–601.
  426. Taylor, G., Truswell, E. M., McQueen, K. G., and Brown, M. C. (1990). Early Tertiary palaeogeography,
  427. landform evolution and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography,
  428. Palaeoclimatology, Palaeoecology 78, 109–134.
  429. Tenison-Woods, J. E. (1883). On the fossil flora of the coal fields of Australia. Proceedings of the
  430. Linnean Society of New South Wales 8, 37–167.
  431. Townrow, J. A. (1965a). Notes on Tasmanian pines I. Some Lower Tertiary podocarps. Papers and
  432. Proceedings of the Royal Society of Tasmania 99, 87–107.
  433. Townrow, J. A. (1965b). Notes on Tasmanian pines 2. Athrotaxis from the Lower Tertiary. Papers and
  434. Proceedings of the Royal Society of Tasmania 99, 109–113.
  435. Townrow, J. A. (1967a). The Brachyphyllum crassum complex of fossil conifers. Papers and
  436. Proceedings of the Royal Society of Tasmania 101, 149–172.
  437. Townrow J. A. (1967b). On Rissikia and Mataia podocarpaceous conifers from the Lower Mesozoic of
  438. southern lands. Papers and Proceedings of the Royal Society of Tasmania 101, 103–136.
  439. Townrow, J. A. (1967c). On a conifer from the Jurassic of East Antarctica. Papers and Proceedings of
  440. the Royal Society of Tasmania 101, 137–146.
  441. Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., and Villalba, R. (1995). The ecology of the conifers
  442. of southern South America. In ‘Ecology of the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.)
  443. pp. 120–155. (Melbourne University Press: Melbourne.)
  444. Villagran, C. (1990). Glacial climates and their effects on the history of the vegetation of Chile: a
  445. synthesis based on palynological evidence from Isla Chiloé. Review of Palaeobotany and Palynology
  446. 65, 17–24.
  447. Villalba, R., and Veblen, T. T. (1997). Regional patterns of tree population age structures in northern
  448. Patagonia. Climatic and disturbance influences. Journal of Ecology 85, 113–124.
  449. Villar de Seoane, L. (1998). Comparative study of extant and fossil conifer leaves from the Baqueró
  450. Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review of Palaeobotany and
  451. Palynology 99, 247–263.
  452. Wells, P. M., and Hill, R. S. (1989). Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in
  453. Tasmania. Australian Systematic Botany 2, 387–423.
  454. Whang, S. S., and Hill, R. S. (1999). Late Paleocene Cupressaceae Macrofossils at Lake Bungarby, New
  455. South Wales. Australian Systematic Botany 12, 241–254.
  456. White, M. E. (1981). Revision of the Talbragar fish bed flora (Jurassic) of New South Wales. Australian
  457. Museum Records 33, 695–721.
  458. Whitmore, T. C. (1977). A first look at Agathis. Tropical Forestry Papers 11, 54pp. (Commonwealth
  459. Forestry Institute: Oxford University, Oxford.)
  460. Whitmore, T. C. (1980). A monograph of Agathis. Plant Systematics and Evolution 135, 41–69.
  461. Whitmore, T. C., and Page, C. N. (1980). Evolutionary implications of the distribution and ecology of
  462. the tropical conifer Agathis. New Phytologist 84, 407–416.
  463. Wilde, M. H., and Eames, A. J. (1952). The ovule and ‘seed’ of Araucaria bidwilli with discussion of
  464. the taxonomy of the genus II. Taxonomy. Annals of Botany 16, 27–47.
  465. Yao, X., Taylor, T. N., and Taylor, E. L. (1993). The Triassic seed cone Telemachus from Antarctica.
  466. Review of Palaeobotany and Palynology 78, 269–276.
  467. Zhou, Z., and Li, H. (1994). Some Late Cretaceous plants from King George Island, Antarctica. In
  468. ‘Stratigraphy and Palaeontology of Fildes Peninsula King George Island, Antarctica’. (Ed. Y. Shen.)
  469. State Antarctic Committee Monograph 3, 91–95. (Science Press: China.)
  470. Stockey, R. A., Ko, H., and Woltz, P. (1992). Cuticle micromorphology of Falcatifolium de Laubenfels
  471. (Podocarpaceae). International Journal of Plant Science 153, 589–601.
  472. Taylor, G., Truswell, E. M., McQueen, K. G., and Brown, M. C. (1990). Early Tertiary palaeogeography,
  473. landform evolution and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography,
  474. Palaeoclimatology, Palaeoecology 78, 109–134.
  475. Tenison-Woods, J. E. (1883). On the fossil flora of the coal fields of Australia. Proceedings of the
  476. Linnean Society of New South Wales 8, 37–167.
  477. Townrow, J. A. (1965a). Notes on Tasmanian pines I. Some Lower Tertiary podocarps. Papers and
  478. Proceedings of the Royal Society of Tasmania 99, 87–107.
  479. Townrow, J. A. (1965b). Notes on Tasmanian pines 2. Athrotaxis from the Lower Tertiary. Papers and
  480. Proceedings of the Royal Society of Tasmania 99, 109–113.
  481. Townrow, J. A. (1967a). The Brachyphyllum crassum complex of fossil conifers. Papers and
  482. Proceedings of the Royal Society of Tasmania 101, 149–172.
  483. Townrow J. A. (1967b). On Rissikia and Mataia podocarpaceous conifers from the Lower Mesozoic of
  484. southern lands. Papers and Proceedings of the Royal Society of Tasmania 101, 103–136.
  485. Townrow, J. A. (1967c). On a conifer from the Jurassic of East Antarctica. Papers and Proceedings of
  486. the Royal Society of Tasmania 101, 137–146.
  487. Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., and Villalba, R. (1995). The ecology of the conifers
  488. of southern South America. In ‘Ecology of the Southern Conifers’. (Eds N. J. Enright and R. S. Hill.)
  489. pp. 120–155. (Melbourne University Press: Melbourne.)
  490. Villagran, C. (1990). Glacial climates and their effects on the history of the vegetation of Chile: a
  491. synthesis based on palynological evidence from Isla Chiloé. Review of Palaeobotany and Palynology
  492. 65, 17–24.
  493. Villalba, R., and Veblen, T. T. (1997). Regional patterns of tree population age structures in northern
  494. Patagonia. Climatic and disturbance influences. Journal of Ecology 85, 113–124.
  495. Villar de Seoane, L. (1998). Comparative study of extant and fossil conifer leaves from the Baqueró
  496. Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review of Palaeobotany and
  497. Palynology 99, 247–263.
  498. Wells, P. M., and Hill, R. S. (1989). Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in
  499. Tasmania. Australian Systematic Botany 2, 387–423.
  500. Whang, S. S., and Hill, R. S. (1999). Late Paleocene Cupressaceae Macrofossils at Lake Bungarby, New
  501. South Wales. Australian Systematic Botany 12, 241–254.
  502. White, M. E. (1981). Revision of the Talbragar fish bed flora (Jurassic) of New South Wales. Australian
  503. Museum Records 33, 695–721.
  504. Whitmore, T. C. (1977). A first look at Agathis. Tropical Forestry Papers 11, 54pp. (Commonwealth
  505. Forestry Institute: Oxford University, Oxford.)
  506. Whitmore, T. C. (1980). A monograph of Agathis. Plant Systematics and Evolution 135, 41–69.
  507. Whitmore, T. C., and Page, C. N. (1980). Evolutionary implications of the distribution and ecology of
  508. the tropical conifer Agathis. New Phytologist 84, 407–416.
  509. Wilde, M. H., and Eames, A. J. (1952). The ovule and ‘seed’ of Araucaria bidwilli with discussion of
  510. the taxonomy of the genus II. Taxonomy. Annals of Botany 16, 27–47.
  511. Yao, X., Taylor, T. N., and Taylor, E. L. (1993). The Triassic seed cone Telemachus from Antarctica.
  512. Review of Palaeobotany and Palynology 78, 269–276.
  513. Zhou, Z., and Li, H. (1994). Some Late Cretaceous plants from King George Island, Antarctica. In
  514. ‘Stratigraphy and Palaeontology of Fildes Peninsula King George Island, Antarctica’. (Ed. Y. Shen.)
  515. State Antarctic Committee Monograph 3, 91–95. (Science Press: China.)" name="eprints.referencetext" />
  516. <meta content="Hill, Robert S. and Brodribb, Tim J. (1999) Turner Review No. 2 Southern Conifers in Time and Space. Australian Journal of Botany, 47 (5). pp. 639-696. ISSN 0067-1924" name="eprints.citation" />
  517. <meta content="http://eprints.utas.edu.au/2639/1/hill__and__brod__turner__rev.pdf" name="eprints.document_url" />
  518. <link rel="schema.DC" href="http://purl.org/DC/elements/1.0/" />
  519. <meta content="Turner Review No. 2
  520. Southern Conifers in Time and Space" name="DC.title" />
  521. <meta content="Hill, Robert S." name="DC.creator" />
  522. <meta content="Brodribb, Tim J." name="DC.creator" />
  523. <meta content="270402 Plant Physiology" name="DC.subject" />
  524. <meta content="270400 Botany" name="DC.subject" />
  525. <meta content="The three southern conifer families, Araucariaceae, Cupressaceae and Podocarpaceae, have a long
  526. history and continue to be an important part of the vegetation today. The Araucariaceae have the most
  527. extensive fossil record, occurring in both hemispheres, and with Araucaria in particular having an
  528. ancient origin. In the Southern Hemisphere Araucaria and Agathis have substantial macrofossil records,
  529. especially in Australasia, and Wollemia probably also has an important macrofossil record. At least one
  530. extinct genus of Araucariaceae is present as a macrofossil during the Cenozoic. Cupressaceae
  531. macrofossils are difficult to identify in older sediments, but the southern genera begin their record in the
  532. Cretaceous (Athrotaxis) and become more diverse and extensive during the Cenozoic. Several extinct
  533. genera of Cupressaceae also occur in Cretaceous and Cenozoic sediments in Australasia. The
  534. Podocarpaceae probably begin their macrofossil record in the Triassic, although the early history is still
  535. uncertain. Occasional Podocarpaceae macrofossils have been recorded in the Northern Hemisphere, but
  536. they are essentially a southern family. The Cenozoic macrofossil record of the Podocarpaceae is
  537. extensive, especially in south-eastern Australia, where the majority of the extant genera have been
  538. recorded. Some extinct genera have also been reported from across high southern latitudes, confirming
  539. an extremely diverse and widespread suite of Podocarpaceae during the Cenozoic in the region.
  540. In the Southern Hemisphere today conifers achieve greatest abundance in wet forests. Those which
  541. compete successfully with broad-leaved angiosperms in warmer forests produce broad, flat
  542. photosynthetic shoots. In the Araucariaceae this is achieved by the planation of multiveined leaves into
  543. large compound shoots. In the other two families leaves are now limited to a single vein (except
  544. Nageia), and to overcome this limitation many genera have resorted to re-orientation of leaves and twodimensional
  545. flattening of shoots. The Podocarpaceae show greatest development of this strategy with 11
  546. of 19 genera producing shoots analogous to compound leaves. The concentration of conifers in wet
  547. forest left them vulnerable to the climate change which occurred in the Cenozoic, and decreases in
  548. diversity have occurred since the Paleogene in all regions where fossil records are available. Information
  549. about the history of the dry forest conifers is extremely limited because of a lack of fossilisation in such
  550. environments. The southern conifers, past and present, demonstrate an ability to compete effectively
  551. with angiosperms in many habitats and should not be viewed as remnants which are ineffectual against
  552. angiosperm competitors." name="DC.description" />
  553. <meta content="1999" name="DC.date" />
  554. <meta content="Article" name="DC.type" />
  555. <meta content="PeerReviewed" name="DC.type" />
  556. <meta content="application/pdf" name="DC.format" />
  557. <meta content="http://eprints.utas.edu.au/2639/1/hill__and__brod__turner__rev.pdf" name="DC.identifier" />
  558. <meta content="http://www.publish.csiro.au/paper/BT98093.htm" name="DC.relation" />
  559. <meta content="Hill, Robert S. and Brodribb, Tim J. (1999) Turner Review No. 2 Southern Conifers in Time and Space. Australian Journal of Botany, 47 (5). pp. 639-696. ISSN 0067-1924" name="DC.identifier" />
  560. <meta content="http://eprints.utas.edu.au/2639/" name="DC.relation" />
  561. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/BibTeX/epprod-eprint-2639.bib" title="BibTeX" type="text/plain" />
  562. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/ContextObject/epprod-eprint-2639.xml" title="OpenURL ContextObject" type="text/xml" />
  563. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/ContextObject::Dissertation/epprod-eprint-2639.xml" title="OpenURL Dissertation" type="text/xml" />
  564. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/ContextObject::Journal/epprod-eprint-2639.xml" title="OpenURL Journal" type="text/xml" />
  565. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/DC/epprod-eprint-2639.txt" title="Dublin Core" type="text/plain" />
  566. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/DIDL/epprod-eprint-2639.xml" title="DIDL" type="text/xml" />
  567. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/EndNote/epprod-eprint-2639.enw" title="EndNote" type="text/plain" />
  568. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/HTML/epprod-eprint-2639.html" title="HTML Citation" type="text/html; charset=utf-8" />
  569. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/METS/epprod-eprint-2639.xml" title="METS" type="text/xml" />
  570. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/MODS/epprod-eprint-2639.xml" title="MODS" type="text/xml" />
  571. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/RIS/epprod-eprint-2639.ris" title="Reference Manager" type="text/plain" />
  572. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/Refer/epprod-eprint-2639.refer" title="Refer" type="text/plain" />
  573. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/Simple/epprod-eprint-2639text" title="Simple Metadata" type="text/plain" />
  574. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/Text/epprod-eprint-2639.txt" title="ASCII Citation" type="text/plain; charset=utf-8" />
  575. <link rel="alternate" href="http://eprints.utas.edu.au/cgi/export/2639/XML/epprod-eprint-2639.xml" title="EP3 XML" type="text/xml" />
  576.  
  577. </head>
  578. <body bgcolor="#ffffff" text="#000000" onLoad="loadRoutine(); MM_preloadImages('images/eprints/ePrints_banner_r5_c5_f2.gif','images/eprints/ePrints_banner_r5_c7_f2.gif','images/eprints/ePrints_banner_r5_c8_f2.gif','images/eprints/ePrints_banner_r5_c9_f2.gif','images/eprints/ePrints_banner_r5_c10_f2.gif','images/eprints/ePrints_banner_r5_c11_f2.gif','images/eprints/ePrints_banner_r6_c4_f2.gif')">
  579. <div class="ep_noprint"><noscript><style type="text/css">@import url(http://eprints.utas.edu.au/style/nojs.css);</style></noscript></div>
  580.  
  581.  
  582.  
  583.  
  584. <table width="795" border="0" cellspacing="0" cellpadding="0">
  585. <tr>
  586. <td><script language="JavaScript1.2">mmLoadMenus();</script>
  587. <table border="0" cellpadding="0" cellspacing="0" width="795">
  588. <!-- fwtable fwsrc="eprints_banner_final2.png" fwbase="ePrints_banner.gif" fwstyle="Dreamweaver" fwdocid = "1249563342" fwnested="0" -->
  589. <tr>
  590. <td><img src="/images/eprints/spacer.gif" width="32" height="1" border="0" alt="" /></td>
  591. <td><img src="/images/eprints/spacer.gif" width="104" height="1" border="0" alt="" /></td>
  592. <td><img src="/images/eprints/spacer.gif" width="44" height="1" border="0" alt="" /></td>
  593. <td><img src="/images/eprints/spacer.gif" width="105" height="1" border="0" alt="" /></td>
  594. <td><img src="/images/eprints/spacer.gif" width="41" height="1" border="0" alt="" /></td>
  595. <td><img src="/images/eprints/spacer.gif" width="16" height="1" border="0" alt="" /></td>
  596. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  597. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  598. <td><img src="/images/eprints/spacer.gif" width="68" height="1" border="0" alt="" /></td>
  599. <td><img src="/images/eprints/spacer.gif" width="82" height="1" border="0" alt="" /></td>
  600. <td><img src="/images/eprints/spacer.gif" width="69" height="1" border="0" alt="" /></td>
  601. <td><img src="/images/eprints/spacer.gif" width="98" height="1" border="0" alt="" /></td>
  602. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  603. </tr>
  604. <tr>
  605. <td colspan="12"><img name="ePrints_banner_r1_c1" src="/images/eprints/ePrints_banner_r1_c1.gif" width="795" height="10" border="0" alt="" /></td>
  606. <td><img src="/images/eprints/spacer.gif" width="1" height="10" border="0" alt="" /></td>
  607. </tr>
  608. <tr>
  609. <td rowspan="6"><img name="ePrints_banner_r2_c1" src="/images/eprints/ePrints_banner_r2_c1.gif" width="32" height="118" border="0" alt="" /></td>
  610. <td rowspan="5"><a href="http://www.utas.edu.au/"><img name="ePrints_banner_r2_c2" src="/images/eprints/ePrints_banner_r2_c2.gif" width="104" height="103" border="0" alt="" /></a></td>
  611. <td colspan="10"><img name="ePrints_banner_r2_c3" src="/images/eprints/ePrints_banner_r2_c3.gif" width="659" height="41" border="0" alt="" /></td>
  612. <td><img src="/images/eprints/spacer.gif" width="1" height="41" border="0" alt="" /></td>
  613. </tr>
  614. <tr>
  615. <td colspan="3"><a href="http://eprints.utas.edu.au/"><img name="ePrints_banner_r3_c3" src="/images/eprints/ePrints_banner_r3_c3.gif" width="190" height="31" border="0" alt="" /></a></td>
  616. <td rowspan="2" colspan="7"><img name="ePrints_banner_r3_c6" src="/images/eprints/ePrints_banner_r3_c6.gif" width="469" height="37" border="0" alt="" /></td>
  617. <td><img src="/images/eprints/spacer.gif" width="1" height="31" border="0" alt="" /></td>
  618. </tr>
  619. <tr>
  620. <td colspan="3"><img name="ePrints_banner_r4_c3" src="/images/eprints/ePrints_banner_r4_c3.gif" width="190" height="6" border="0" alt="" /></td>
  621. <td><img src="/images/eprints/spacer.gif" width="1" height="6" border="0" alt="" /></td>
  622. </tr>
  623. <tr>
  624. <td colspan="2"><img name="ePrints_banner_r5_c3" src="/images/eprints/ePrints_banner_r5_c3.gif" width="149" height="1" border="0" alt="" /></td>
  625. <td rowspan="2" colspan="2"><a href="/information.html" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821132634_0,0,25,null,'ePrints_banner_r5_c5');MM_swapImage('ePrints_banner_r5_c5','','/images/eprints/ePrints_banner_r5_c5_f2.gif',1);"><img name="ePrints_banner_r5_c5" src="/images/eprints/ePrints_banner_r5_c5.gif" width="57" height="25" border="0" alt="About" /></a></td>
  626. <td rowspan="2"><a href="/view/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133021_1,0,25,null,'ePrints_banner_r5_c7');MM_swapImage('ePrints_banner_r5_c7','','/images/eprints/ePrints_banner_r5_c7_f2.gif',1);"><img name="ePrints_banner_r5_c7" src="/images/eprints/ePrints_banner_r5_c7.gif" width="68" height="25" border="0" alt="Browse" /></a></td>
  627. <td rowspan="2"><a href="/perl/search/simple" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133201_2,0,25,null,'ePrints_banner_r5_c8');MM_swapImage('ePrints_banner_r5_c8','','/images/eprints/ePrints_banner_r5_c8_f2.gif',1);"><img name="ePrints_banner_r5_c8" src="/images/eprints/ePrints_banner_r5_c8.gif" width="68" height="25" border="0" alt="Search" /></a></td>
  628. <td rowspan="2"><a href="/perl/register" onMouseOut="MM_swapImgRestore();MM_startTimeout();" onMouseOver="MM_showMenu(window.mm_menu_1018171924_3,0,25,null,'ePrints_banner_r5_c9');MM_swapImage('ePrints_banner_r5_c9','','/images/eprints/ePrints_banner_r5_c9_f2.gif',1);"><img name="ePrints_banner_r5_c9" src="/images/eprints/ePrints_banner_r5_c9.gif" width="68" height="25" border="0" alt="register" /></a></td>
  629. <td rowspan="2"><a href="/perl/users/home" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133422_4,0,25,null,'ePrints_banner_r5_c10');MM_swapImage('ePrints_banner_r5_c10','','/images/eprints/ePrints_banner_r5_c10_f2.gif',1);"><img name="ePrints_banner_r5_c10" src="/images/eprints/ePrints_banner_r5_c10.gif" width="82" height="25" border="0" alt="user area" /></a></td>
  630. <td rowspan="2"><a href="/help/" onMouseOut="MM_swapImgRestore();MM_startTimeout()" onMouseOver="MM_showMenu(window.mm_menu_0821133514_5,0,25,null,'ePrints_banner_r5_c11');MM_swapImage('ePrints_banner_r5_c11','','/images/eprints/ePrints_banner_r5_c11_f2.gif',1);"><img name="ePrints_banner_r5_c11" src="/images/eprints/ePrints_banner_r5_c11.gif" width="69" height="25" border="0" alt="Help" /></a></td>
  631. <td rowspan="3" colspan="4"><img name="ePrints_banner_r5_c12" src="/images/eprints/ePrints_banner_r5_c12.gif" width="98" height="40" border="0" alt="" /></td>
  632. <td><img src="/images/eprints/spacer.gif" width="1" height="1" border="0" alt="" /></td>
  633. </tr>
  634. <tr>
  635. <td rowspan="2"><img name="ePrints_banner_r6_c3" src="/images/eprints/ePrints_banner_r6_c3.gif" width="44" height="39" border="0" alt="ePrints home" /></td>
  636. <td><a href="/" onMouseOut="MM_swapImgRestore()" onMouseOver="MM_swapImage('ePrints_banner_r6_c4','','/images/eprints/ePrints_banner_r6_c4_f2.gif',1);"><img name="ePrints_banner_r6_c4" src="/images/eprints/ePrints_banner_r6_c4.gif" width="105" height="24" border="0" alt="ePrints home" /></a></td>
  637. <td><img src="/images/eprints/spacer.gif" width="1" height="24" border="0" alt="" /></td>
  638. </tr>
  639. <tr>
  640. <td><img name="ePrints_banner_r7_c2" src="/images/eprints/ePrints_banner_r7_c2.gif" width="104" height="15" border="0" alt="" /></td>
  641. <td colspan="8"><img name="ePrints_banner_r7_c4" src="/images/eprints/ePrints_banner_r7_c4.gif" width="517" height="15" border="0" alt="" /></td>
  642. <td><img src="/images/eprints/spacer.gif" width="1" height="15" border="0" alt="" /></td>
  643. </tr>
  644. </table></td>
  645. </tr>
  646. <tr><td><table width="100%" style="font-size: 90%; border: solid 1px #ccc; padding: 3px"><tr>
  647. <td align="left"><a href="http://eprints.utas.edu.au/cgi/users/home">Login</a> | <a href="http://eprints.utas.edu.au/cgi/register">Create Account</a></td>
  648. <td align="right" style="white-space: nowrap">
  649. <form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/search" style="display:inline">
  650. <input class="ep_tm_searchbarbox" size="20" type="text" name="q" />
  651. <input class="ep_tm_searchbarbutton" value="Search" type="submit" name="_action_search" />
  652. <input type="hidden" name="_order" value="bytitle" />
  653. <input type="hidden" name="basic_srchtype" value="ALL" />
  654. <input type="hidden" name="_satisfyall" value="ALL" />
  655. </form>
  656. </td>
  657. </tr></table></td></tr>
  658. <tr>
  659. <td class="toplinks"><!-- InstanceBeginEditable name="content" -->
  660.  
  661.  
  662. <div align="center">
  663. <table width="720" class="ep_tm_main"><tr><td align="left">
  664. <h1 class="ep_tm_pagetitle">Turner Review No. 2 Southern Conifers in Time and Space</h1>
  665. <p style="margin-bottom: 1em" class="not_ep_block"><span class="person_name">Hill, Robert S.</span> and <span class="person_name">Brodribb, Tim J.</span> (1999) <xhtml:em>Turner Review No. 2 Southern Conifers in Time and Space.</xhtml:em> Australian Journal of Botany, 47 (5). pp. 639-696. ISSN 0067-1924</p><p style="margin-bottom: 1em" class="not_ep_block"></p><table style="margin-bottom: 1em" class="not_ep_block"><tr><td valign="top" style="text-align:center"><a href="http://eprints.utas.edu.au/2639/1/hill__and__brod__turner__rev.pdf"><img alt="[img]" src="http://eprints.utas.edu.au/style/images/fileicons/application_pdf.png" class="ep_doc_icon" border="0" /></a></td><td valign="top"><a href="http://eprints.utas.edu.au/2639/1/hill__and__brod__turner__rev.pdf"><span class="ep_document_citation">PDF</span></a> - Full text restricted - Requires a PDF viewer<br />1438Kb</td><td><form method="get" accept-charset="utf-8" action="http://eprints.utas.edu.au/cgi/request_doc"><input accept-charset="utf-8" value="3459" name="docid" type="hidden" /><div class=""><input value="Request a copy" name="_action_null" class="ep_form_action_button" onclick="return EPJS_button_pushed( '_action_null' )" type="submit" /> </div></form></td></tr></table><p style="margin-bottom: 1em" class="not_ep_block">Official URL: <a href="http://www.publish.csiro.au/paper/BT98093.htm">http://www.publish.csiro.au/paper/BT98093.htm</a></p><div class="not_ep_block"><h2>Abstract</h2><p style="padding-bottom: 16px; text-align: left; margin: 1em auto 0em auto">The three southern conifer families, Araucariaceae, Cupressaceae and Podocarpaceae, have a long&#13;
  666. history and continue to be an important part of the vegetation today. The Araucariaceae have the most&#13;
  667. extensive fossil record, occurring in both hemispheres, and with Araucaria in particular having an&#13;
  668. ancient origin. In the Southern Hemisphere Araucaria and Agathis have substantial macrofossil records,&#13;
  669. especially in Australasia, and Wollemia probably also has an important macrofossil record. At least one&#13;
  670. extinct genus of Araucariaceae is present as a macrofossil during the Cenozoic. Cupressaceae&#13;
  671. macrofossils are difficult to identify in older sediments, but the southern genera begin their record in the&#13;
  672. Cretaceous (Athrotaxis) and become more diverse and extensive during the Cenozoic. Several extinct&#13;
  673. genera of Cupressaceae also occur in Cretaceous and Cenozoic sediments in Australasia. The&#13;
  674. Podocarpaceae probably begin their macrofossil record in the Triassic, although the early history is still&#13;
  675. uncertain. Occasional Podocarpaceae macrofossils have been recorded in the Northern Hemisphere, but&#13;
  676. they are essentially a southern family. The Cenozoic macrofossil record of the Podocarpaceae is&#13;
  677. extensive, especially in south-eastern Australia, where the majority of the extant genera have been&#13;
  678. recorded. Some extinct genera have also been reported from across high southern latitudes, confirming&#13;
  679. an extremely diverse and widespread suite of Podocarpaceae during the Cenozoic in the region.&#13;
  680. In the Southern Hemisphere today conifers achieve greatest abundance in wet forests. Those which&#13;
  681. compete successfully with broad-leaved angiosperms in warmer forests produce broad, flat&#13;
  682. photosynthetic shoots. In the Araucariaceae this is achieved by the planation of multiveined leaves into&#13;
  683. large compound shoots. In the other two families leaves are now limited to a single vein (except&#13;
  684. Nageia), and to overcome this limitation many genera have resorted to re-orientation of leaves and twodimensional&#13;
  685. flattening of shoots. The Podocarpaceae show greatest development of this strategy with 11&#13;
  686. of 19 genera producing shoots analogous to compound leaves. The concentration of conifers in wet&#13;
  687. forest left them vulnerable to the climate change which occurred in the Cenozoic, and decreases in&#13;
  688. diversity have occurred since the Paleogene in all regions where fossil records are available. Information&#13;
  689. about the history of the dry forest conifers is extremely limited because of a lack of fossilisation in such&#13;
  690. environments. The southern conifers, past and present, demonstrate an ability to compete effectively&#13;
  691. with angiosperms in many habitats and should not be viewed as remnants which are ineffectual against&#13;
  692. angiosperm competitors.</p></div><table style="margin-bottom: 1em" cellpadding="3" class="not_ep_block" border="0"><tr><th valign="top" class="ep_row">Item Type:</th><td valign="top" class="ep_row">Article</td></tr><tr><th valign="top" class="ep_row">Subjects:</th><td valign="top" class="ep_row"><a href="http://eprints.utas.edu.au/view/subjects/270402.html">270000 Biological Sciences &gt; 270400 Botany &gt; 270402 Plant Physiology</a><br /><a href="http://eprints.utas.edu.au/view/subjects/270400.html">270000 Biological Sciences &gt; 270400 Botany</a></td></tr><tr><th valign="top" class="ep_row">ID Code:</th><td valign="top" class="ep_row">2639</td></tr><tr><th valign="top" class="ep_row">Deposited By:</th><td valign="top" class="ep_row"><span class="ep_name_citation"><span class="person_name">Scholarly Publications Librarian</span></span></td></tr><tr><th valign="top" class="ep_row">Deposited On:</th><td valign="top" class="ep_row">10 Dec 2007 11:47</td></tr><tr><th valign="top" class="ep_row">Last Modified:</th><td valign="top" class="ep_row">09 Jan 2008 02:30</td></tr><tr><th valign="top" class="ep_row">ePrint Statistics:</th><td valign="top" class="ep_row"><a target="ePrintStats" href="/es/index.php?action=show_detail_eprint;id=2639;">View statistics for this ePrint</a></td></tr></table><p align="right">Repository Staff Only: <a href="http://eprints.utas.edu.au/cgi/users/home?screen=EPrint::View&amp;eprintid=2639">item control page</a></p>
  693. </td></tr></table>
  694. </div>
  695.  
  696.  
  697.  
  698. <!-- InstanceEndEditable --></td>
  699. </tr>
  700. <tr>
  701. <td><!-- #BeginLibraryItem "/Library/footer_eprints.lbi" -->
  702. <table width="795" border="0" align="left" cellpadding="0" class="footer">
  703. <tr valign="top">
  704. <td colspan="2"><div align="center"><a href="http://www.utas.edu.au">UTAS home</a> | <a href="http://www.utas.edu.au/library/">Library home</a> | <a href="/">ePrints home</a> | <a href="/contact.html">contact</a> | <a href="/information.html">about</a> | <a href="/view/">browse</a> | <a href="/perl/search/simple">search</a> | <a href="/perl/register">register</a> | <a href="/perl/users/home">user area</a> | <a href="/help/">help</a></div><br /></td>
  705. </tr>
  706. <tr><td colspan="2"><p><img src="/images/eprints/footerline.gif" width="100%" height="4" /></p></td></tr>
  707. <tr valign="top">
  708. <td width="68%" class="footer">Authorised by the University Librarian<br />
  709. © University of Tasmania ABN 30 764 374 782<br />
  710. <a href="http://www.utas.edu.au/cricos/">CRICOS Provider Code 00586B</a> | <a href="http://www.utas.edu.au/copyright/copyright_disclaimers.html">Copyright &amp; Disclaimers</a> | <a href="http://www.utas.edu.au/accessibility/index.html">Accessibility</a> | <a href="http://eprints.utas.edu.au/feedback/">Site Feedback</a>  </td>
  711. <td width="32%"><div align="right">
  712. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><img src="http://www.utas.edu.au/shared/logos/unioftasstrip.gif" alt="University of Tasmania Home Page" width="260" height="16" border="0" align="right" /></a></p>
  713. <p align="right" class="NoPrint"><a href="http://www.utas.edu.au/"><br />
  714. </a></p>
  715. </div></td>
  716. </tr>
  717. <tr valign="top">
  718. <td><p>  </p></td>
  719. <td><div align="right"><span class="NoPrint"><a href="http://www.eprints.org/software/"><img src="/images/eprintslogo.gif" alt="ePrints logo" width="77" height="29" border="0" align="bottom" /></a></span></div></td>
  720. </tr>
  721. </table>
  722. <!-- #EndLibraryItem -->
  723. <div align="center"></div></td>
  724. </tr>
  725. </table>
  726.  
  727. </body>
  728. </html>